A case study of aggregation behaviors of titanium dioxide nanoparticles in the presence of dodecylbenzene sulfonate in natural water.

نویسندگان

  • Xin Du
  • Xiuheng Wang
  • Shijie You
  • Qiuru Wang
  • Xiaobo Gong
چکیده

The present work aims to ascertain the mechanisms of surfactant (dodecylbenzene sulfonate; DBS) effects on the aggregation behaviors of TiO2 nanoparticles (TiO2-NPs) in natural water samples. Aggregation experiments were conducted at a TiO2-NPs concentration of 10mg/L in deionized water and in natural water samples via dynamic light scattering and Zeta potential determination. Average attachment efficiency was calculated to compare the aggregation behaviors of nanoparticles in the two aqueous media. Results showed that the effects of DBS on aggregation could be interpreted by both Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO mechanisms. In natural water samples, aggregation did not occur rapidly and was able to develop slowly under all conditions, and the roles of DBS were obvious at high DBS concentration owing to the impacts of inherent components of natural water samples, such as colloids and natural organic compounds. Future aggregation studies should concentrate on multi-factor, multi-colloidal and dynamic aspects under similar environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Destruction of Amylopectin in the Presence and Absence of TiO2 Nanoparticles

Today, the use of natural polymers and their replacement with synthetic polymers in various fields of science has attracted much attention. Reducing the associated risks, easy access, and being cost-effective are among the advantages of using natural polymers compared to the synthetic polymers. In this research, the destruction of amylopectin in the presence and absence of titanium dioxide nano...

متن کامل

Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus

Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...

متن کامل

Photocatalytic Removal of Pseudomonas Aeruginosa from Water Using Titanium Dioxide Nanoparticles and UV Irradiation

Background: Titanium dioxide (TiO2)-mediated photocatalysis has been found to be an efficient method of water treatment and is capable of degrading a wide range of organic pollutants and microbial agents with high efficiency. The microorganism Pseudomonas aeruginosa is resistant to chemicals and UV irradiation. Bacteria which are resistant to UV-induced oxidative damage of the cell membrane are...

متن کامل

Effect of Methanol and Titanium Dioxide Nanoparticles on Phytochemical Properties of Artichoke (Cynara scolymus L.)

Extended Abstract Introduction and Objective: In recent years, studies have focused on the use of new compounds that can be synthesized inside the plant and increase the photosynthetic efficiency of the plant. Some of these compounds include micronutrients and alcohols. Alcohols such as methanol as a carbon source will increase photosynthetic efficiency and improve plant growth parameters. Tit...

متن کامل

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015